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A Problem in Probability

Cartesian plane has polar coordinates (r, q), where 
q is the angle that the ray emanating from the ori-
gin (0, 0) through the point makes with the positive 
x-axis and r is the distance to the point from the 
origin (see fig. 1). By convention, we assume that  
0 ≤ q < 2p. If we consider the dartboard to be a cir-
cle of radius 1 centered at the origin, then all points 
of the dartboard except for the origin are specified 
by 0 < r < 1. To sidestep any ambiguity, we also use 
the convention that the origin is represented by  
(0, 0) in polar coordinates.

To compute empirical probabilities from this 
experiment, we might break up the dartboard into 
regions, count the number of times a dart lands 
in a given region, and then divide that number by 
the total number of trials. We assume that we can 
throw the darts in a truly random fashion, so that 
there is an equal probability of the dart landing 
anywhere on the board, but that the dart must land 
on the board. The empirical results should produce 
a close approximation of the theoretical probability 
of the dart landing in any given region. But then a 
question arises: How do we compute the theoretical 
probability that a dart will land in a given region of 
the dartboard?

Finding theoretical probabilities in a discrete 
setting is fairly simple: Determine the complete 
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Suppose that we perform an experiment that 
involves randomly throwing darts at a dart-
board. We then record where they land. We 

would like to determine the probability of a dart 
landing in a given region of the dartboard.

To record the position of each dart, we will use 
polar coordinates. Recall that every point in the 
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sample space of the probability experiment and 
then divide the number of occurrences of a desired 
outcome by the total number of outcomes. For 
example, when computing the theoretical probabil-
ity of rolling a die and obtaining 1 or 3, we simply 
notice that 2 of the 6 possible outcomes in the sam-
ple space {1, 2, 3, 4, 5, 6} will give us the desired 
result; hence, the probability is 2/6 = 1/3. This 
approach may be referred to as an “equally likely 
outcomes” method, and it results in a discrete uni-
form distribution. 

This method cannot be used for the dartboard 
problem, however, because in our geometric con-
ception of the problem there are infinitely many 
points where the dart can land. Instead, we use our 
intuition and define probability geometrically—as, 
for example, in Bannon’s analysis of three ways to 
break a stick (Bannon 2009). The basic idea is that 
the probability of a randomly chosen point falling 
into a specified region is proportional to the size of 
the region. For the two-dimensional geometry of 
the dartboard problem, size is represented by area. 
Analogously, size corresponds to length when we 
choose points on a line and to volume when we 
choose points in space.

In the case of the dartboard, which we shall call 
D, a uniform probability distribution would assign 
equal probabilities to regions within D of equal 
area, thus implying that the probability of a dart 
landing in a certain region can be found by dividing 
the area of the region by the area of the entire cir-
cle. This method extends to other geometric figures, 
but we use the unit disk here. For instance, the 
theoretical probability of the dart landing in C, the 
central disk of radius 1/2 inside the circle of radius 
1, would be as follows:
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As we will see, this is not the only way to calculate 
the probability of a dart landing in C. A differ-
ent approach may lead to a different answer. To 
emphasize that the value 1/4 is based on area, we 
denote it as PArea(C).

We can simulate this experiment by using com-
puter software. For example, Microsoft Excel has a 
simple random number generator that we can use to 
choose points uniformly within an interval—that is, 
the probabilities of choosing points from subinter-
vals of the same length will be equal. At first glance, 
we might think that we can apply this method to the 
dartboard problem in the following way.

Use a uniform distribution to randomly choose an 
r between 0 and 1, then choose q between 0 and 2p, 
and finally plot the resulting point using these num-
bers as polar coordinates. A simple experiment using 
Microsoft Excel reveals the plot of random points 
chosen in this way (see fig. 2). However, the distri-
bution of points does not appear to be uniform here; 
the points seem to be concentrated near the origin. 

Let’s look again at the inner disk C of radius 1/2. 
When we choose points in C, the q-coordinate can 
be anything from 0 to 2p. As for r, if we randomly 
choose a number between 0 and 1, the probability 
that it will lie between 0 and 1/2 is 1/2. Because 
choosing such an r would result in our plotted 
point being in C, the probability of a dart landing in 
C is exactly 1/2. We denote this by PPolar(C) = 1/2. 
In fact, the likelihood of a dart landing in C is equal 
to the likelihood of a dart landing in the outer band 
B, because the probability of a dart landing in B is 
the same as the probability of picking a value of r 

r

(r, )

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8               1

C

B

Fig. 1  Polar coordinates can also be used to represent a 

point in the plane.

Fig. 2  Uniformly choosing r and q and plotting these polar 

coordinates produces results that do not seem uniform.
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between 1/2 and 1, which is also 1/2. But does this 
not contradict our usual intuition about probabili-
ties? Using the basic area formulas above, we deter-
mined that the probability of choosing a point in C 
should be 1/4. Something seems awry here. 

In the brief mathematical exploration that fol-
lows, we will attempt to get to the bottom of this 
seeming paradox. In the process, we will unearth 
some interesting assumptions and connections 
inherent in the study of probability.

A CASUAl AnAlYSiS OF THe PROBleM
Let’s return to the manner by which we chose a 
point in C. We randomly chose r and q using one-
dimensional uniform distributions. We can envi-
sion this as a way to choose a point (r, q) from the 
open rectangle R = [0, 1) × [0, 2p), treating r and q 
as if they were Cartesian coordinates (see fig. 3a). 
Moreover, it is easy to see that this approach results 
in a uniform distribution of points in the rectangle. 

This selection process means that the probabili-
ties of choosing points from same-area subregions 
within the rectangle are the same. Notice that the 
probability of choosing a point in the left half of 
this rectangle is 1/2 and that choosing a point here 
is equivalent to the point landing in C. If we use L 
to denote this half-rectangle and PArea to denote the 
uniform probability in the rectangle R, then we are 
saying that PArea(L) = 1/2 = PPolar(C).

What have we achieved? This particular way 
of choosing points in the dartboard D renders the 
dartboard somehow “equivalent” to the rectangle. 

Here we use the term “equivalent” loosely, in 
the sense that one can find a mapping M of the rect-
angle onto the dartboard that transfers the uniform 
probability of subregions of R to their images in 
D. This mapping is the polar coordinate transfor-
mation, which is described by the following set of 
parametric equations:
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Equivalently,
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By picking various values for r and q and seeing 
where they land in D, we see that the pair of equa-
tions in (1) essentially takes R and squeezes and 
stretches it unevenly (along with applying some 
counterclockwise rotation) so as to form the unit 
disk D (see fig. 4). 

And here we can see why what seemed to be a 
paradox arose earlier. The transformation from the 
rectangle to the circle distorts areas. Two regions 
with equal areas in the rectangle can correspond to 

regions of unequal areas in the circle. Therefore, 
although we see a uniform distribution of points 
in the rectangle, we should not expect to observe a 
uniform distribution of points in the circle.

Take, for example, the region C, where PPolar(C) 
equals 1/2 rather than the 1/4 we would expect by 
computing areas in the circle. Points near the left 
edge of the rectangle become squeezed down into a 
region near the origin. In fact, all the points along 
the left edge are compressed in D into a single point, 
the origin. One could think of D as being heavily 
“weighted” there, probabilistically speaking. This 
situation stands in stark contrast to a uniform 
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Fig. 3  A point with cartesian coodinates (r, q) is in the shaded rectangle L (a) if and 

only if the same (r, q) are polar coordinates of a point in shaded disk C (b).

Fig. 4  if the rectangle (a) were made of malleable rubber, it could be de-formed into 

the circle (b) as shown.
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As before, we continue to choose q uniformly in 
the interval [0, 2p), but now we choose r uniformly 
from the interval [0, 1), let s = 1r, and then plot 
the point with polar coordinates (s, q). This way of 
choosing points can be thought of as a new trans-
formation T(r, q) where
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Recall that the subrectangle S in R is defined 
by all points (r, q) where 0 < r1 ≤ r ≤ r2 < 1 and  
0 < q1 ≤ q ≤ q2 < 2p. Now, under the mapping T, 
we see that
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In particular, under T, rectangular regions in R 
with the same area are mapped to regions with the 
same area in D.

Another simple Microsoft Excel experiment that 
uses the new mapping T results in the distribution 
of randomly chosen points, as shown in figure 6. 
It appears that this distribution is uniform and that 
we have solved the problem of simulating the ran-
dom dart-throwing experiment. 

This entire discussion has focused solely on rect-
angular regions and their images in the dartboard 
under the mappings M and T. To consider more 
general regions, we need to make use of the tools of 
calculus. That discussion can be found online (go to 
www.nctm.org/mt). 
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Fig. 5  transformation M carries the rectangle S (a) onto the c-shaped region M(S) (b). Fig. 6  “choosing” points with the mapping T produces a 

more uniform distribution.

 (a) (b)

distribution on D, which would place an equal 
“weight” on regions of the same area in D. This 
“distortion” and nonuniformity of “weight” brought 
about by our mapping cause an equal likelihood of 
landing in C as in the outer band B, when we choose 
the polar coordinates of the points uniformly.

We can quantify these phenomena by taking a 
look at how M affects the areas of subrectangles 
in the rectangle R. The results can be extended to 
regions of other shapes.

Let S be a subrectangle defined by all points  
(r, q) where 0 < r1 ≤ r ≤ r2 < 1 and 0 < q1 ≤ q ≤ q2 < 
2p. Then, as shown in figure 5, the image M(S) 
has area
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This mapping shows how subrectangles of equal 
area in R may have images under M that have dif-
ferent areas. For instance, the left and right halves 
of R clearly have the same area, but their images 
are the central region C and the outer band B, 
which have unequal areas. Or, for a more visual 
example, imagine sliding S (in fig. 5) to the right. 
Its image then moves radially outward in the circle 
D, increasing in area in the process.

SOlving THe PROBleM  
OF POinT PiCKing
The fact that r is squared when finding the areas of 
such regions results in the distortion and shrink-
ing closer to the origin described above. One might 
wonder if we could make up for such distortion and 
shrinking when finding areas by choosing points 
in a different way. As a matter of fact, suppose that 
we picked our points as follows. 
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A Problem in Probability

OTHeR RegiOnS
The print version of this issue’s “Delving Deeper” 
has focused solely on rectangular regions and their 
images in the dartboard under the mappings M and 
T. To consider more general regions, we turn to the 
tools of calculus. 

Calculus allows us to determine areas of very 
general regions in the plane and thus to find prob-
abilities of regions using integrals. For example, in 
the case of the rectangle R described in the print 
article, the probability of choosing a point (r, q) 
uniformly from any region E in R is Area(E)/
Area(R) = Area(E)/p. In turn, 
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As a particular case, let E be the rectangle Rt 
defined by 0 ≤ r ≤ t and 0 ≤ q ≤ 2p. We see that
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(Equations [1] and [2] appear in the print version 
of this month’s “Delving Deeper.”)

Turning to the case of the dartboard D, we can 
express the (uniform) probability of a region E as 
Area(E)/Area(D) = Area(E)/p. Again, the area of 
E can be expressed as an integral, but this time we 
use x and y as the variables because we envision D 
as situated in a Cartesian xy-plane. For example, if 
E is a smaller disk Dt of radius t between 0 and 1, 
the probability of choosing a point that lies in Dt is
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This integral is challenging to compute because 
the region Dt is not nearly as simple as a rectangle. 
(What would the limits of integration be?) How-
ever, a theorem from calculus allows us to convert 

this integral into a simpler integral involving polar 
coordinates. More generally, it specifies how to 
introduce a transformation of variables in a double 
integral. Our specific case involves the transforma-
tion from rectangular to polar coordinates, but we 
state the theorem in the general case, as follows: 
Given a suitable mapping M from a region A in the 
uv-plane to a region B in the xy-plane, there is a 
function J M(u, v) such that
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The technically correct statement of the theorem 

has to include certain assumptions about M, such 
as differentiability. Here, we are content to note 
that the two specific mappings we are concerned 
with satisfy the technical requirements. The func-
tion JM  is found by taking the absolute value of 
the determinant of the matrix that consists of the 
partial derivatives of the mapping M. This matrix is 
referred to as the Jacobian matrix of M.

In our situation, the plane being represented in 
polar coordinates (r, q) can be thought of as the 
uv-plane mentioned in the theorem and M(r, q) = 
(rcosq, rsinq). We can compute that JM = r. Thus, 
we see that using the polar-coordinate transforma-
tion M to transfer points uniformly chosen from 
the rectangle R to the dartboard D introduces an 
extra factor of r into the formula for computing 
area and, hence, into the formula for probabilities. 
Indeed, combining equations (4) and (5), we have
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Here, we have used the fact that the region Rt 
is mapped by M onto the region Dt. This formula 
gives the correct (geometric) probability of a dart 
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landing in the region Dt. This probability is differ-
ent from the probability that in our original discus-
sion was “transferred” over from the rectangle by 
mapping M (shown in (3) to be t).

The last integral in (6) looks similar to the inte-
gral in (3), except for the factor of 2r that appears 
in (6). And herein lies the rub: Given that the lim-
its of integration are the same in each case, the fac-
tor of 2r in the case of the disk suppresses the con-
tribution of points closer to the origin, because this 
is where r is relatively small. However, in the case 
of the rectangle, the factor of r is missing, reflecting 
the uniform distribution of all points regardless of 
how small r might be. This result corresponds to 
what we discovered earlier.

Consider now our second method of picking 
points, which involves choosing a point (r, q) in R 
and applying the “altered” polar-coordinate trans-
formation T(r, q) where
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Here, the Jacobian function JT(r, q) is constant, sim-
ply equal to 1/2. Again, consider an arbitrary disk 
D, centered at the origin of radius t in D. The setT r r r
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gets mapped to Dt by T. We compute the probability 
of a dart landing in the set Dt as
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This computation shows that in some sense T 
is the “correct” transformation to use to transfer 
uniformly chosen points to the dartboard while pre-
serving the intrinsic uniform distribution on both 
the rectangle R and the dartboard D. These meth-
ods can be extended to more general subregions of 
R and their images in the dartboard.

POinT PiCKing
What is the upshot of our little excursion, you may 
ask? It is—plain and simple—that probability is 
dependent on how the points are picked. The inter-
ested reader should investigate Bertrand’s paradox, 
in which the simple question of finding the prob-
ability that a random chord of a circle will be longer 
than a side of an inscribed equilateral triangle has 
three different solutions, all depending on how the 
chords of the circle are chosen. Indeed, problems 
such as dartboard point picking and Bertrand’s par-
adox serve to challenge our assumptions about prob-
ability. Investigating them can further our under-
standing of these and other mathematical ideas.
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